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Self-similar techniques allow one to find exact solutions in a number of 
problems, while in a wider class of problems they allow one to obtain 
approximate solutions. These techniques are examined in general terms in 
[ 1 I. There exists also a large number of papers. in particular the work 
of Barenblatt [2,3 I, Barenblatt and Zel’dovich 14.5 1 , in which the 
method of self-similar solutions is successfully applied to various prob- 
lems of the nonstationary motion of continuous media. 

Self-similar solutions as a means of obtaining exact solutions of the 
equations of dynamic plasticity in plane problems have been investigated 
by the author [6 1. The aim of the present note is to show how approxi- 
mate solutions for a wider class of problems may be obtained. 

1. The nonsteady motion of an ideally plastic medium in a state of 

plane strain is described by the following system of equations [ ‘7 1 : 

ar !?g+_$ au a-r,, aa au 
-p,,=o, x+ay-Pat=O 

(oX - oJ + 42,1/2 = 4k2 

2% av /ax+ aday 
-y=au/ax-aV/ay* %--Qy 

Expressing the stresses in terms of the functions x and 4 by means of 
the formulas 

ox 
= k (2~ f cos 2q), =xIl = ksin2q 

%I 

we obtain a system of the form 

ax acp acp P au -- 
ax sin2cpz+cos2cpay---2k=O 
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If we introduce new independent variables 

A=$ p=$, 2k 
(I=--- 

P (2) 

then the system (1) takes on the form 

For to + OQ this system passes to the system of equations of self- 
similar motions which was examined in [6 I. The quantity t,, can be re- 
garded as a characteristic time of the nonstationary process, which for 
se If-similar motions is infinite, but which in a wider class of motions 
is finite. To obtain an approximate solution for large values of to one 
naturally expands in powers of r 

x = $0) + T:x(‘) + . . . , u = u(O) +zu(l) + . . . 
(4) 

I$l = q(O) -I- ,Cp(‘) + . . ., v = JO) I , edl) + . . . 

Substituting the expansions (1) into Equations (3), and setting equal 
to zero the coefficients of like powers of r, we obtain successive 
systems of equations of zeroth, first, second, etc. order of approxima- 
tion. 

The zeroth-order system is a system of self-similar equations. Let us 
examine in detail the first-order approximation. 

The corresponding equations have the form 

ax”’ au(l) au(l) -- -_ 
ah. 

,j” 2vto)ag + cos 2rplo)ag 1 TAT+” ap 

2p 
i 

a$O) - an C”S 2@) - c sin 2v(O) 
) 

_- UC”) = 6 

(3) 

a XC” ,,3 w(l) a$) au(l) a&) dCL + ~0s 2~ al, f sin 2qJ”) --qy- + J. x -I- IIT- 

_ 2p 
c 
‘?P 

ah 
sill 2q’O) _ -f$! ros 2q’O)) c (‘(‘) S 0 
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This is a system of four linear equations in the unknowns x (1) 
u(l), v(l)s 

. q% 

We assume that the solution of t’he self-similar equations 
has already been obtained; hence, all quantities of zeroth order can be 
regarded as known. We then determine the characteristics of the system (5). 
To do this it is necessary to solve the equations of the system for the 
partial derivatives, together with the expressions for the total differ- 
entials of the functions x(l), 4(l), w(l), v(l). The equation for the de- 
termination of the directions of the characteristics has the form 
1 aik 1 = 0, where the coefficients of the determinant aik are the follow- 
ing: 

dh 
a11 = 1, aIt= - sin 29(O) - cos 29(O) AS 

dP ’ 
aI3 = h + p-q- , air = 0 

dh dh 
aa = ~0s 2q~(O) - sin 2qJ”) - 

dh 
221 =- 3 

@ dp p 
a23 = 0, a?4 = h + p T 

a31 = 0, asa = 0, a33 = 2 +cot 2p g , as4 = - c0t2vC0) 

a41 = 0, a42 = 0, a43 = - cot2cp (0) dh 
dCc ’ 

au = &)tQ(o’ - 2 2% 
dp 

It is easily seen that the fourth-order determinant decomposes into 
two determinants of second order, giving two equations for the determina- 
tion of dp /dh. It turns out that each of these equations leads to an 
expression for the characteristic directions of the following form: 

(7) 

Hence, at each point of the A, p-plane there are two real character- 
istic directions, each with a multiplicity of two, so the system (5) is 
hyperbolic in the entire h, p-plane. 

The hyperbolicity of the system (5) allows one to develop numerical 
methods of solution that are analogous to the methods applied in static 
plasticity and gasdynamics. One of the possible versions of difference 
equations. which allow one to carry out the numerical integration of the 
system of nonlinear equations of self-similar motion, was investigated 
in 16 1. In the present case the difference equations will be somewhat 
more complicated because the unknown function ~75~~) appears along with the 
velocities in the last two equations for the first-order approximation. 
On the other hand, the present problem is simpler in that the system (5) 
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is linear, so that its characteristics are known beforehand. It is 
essential to note that, as follows from Formula (7). the characteristic 
directions of system (5) coincide with the characteristic directions of 
the system of self-similar equations, so that they may be considered as 
known if the zeroth-order approximation is known. 

2. The equations which have been obtained allow one to find aPProxi- 
mate solutions for a number of dynamic plasticity pr,?blems. The self- 
similar problem of the propagation of a constant pressure p over the sur- 
face of a half-space was investigated in [6 1. Let us assume that it is 
required to solve the more difficult problem where p depends on time. We 
represent the pressure on the surface of the body in the form 

P = Pof (hh f (A) = { ; 

If p is expanded in a Power series 

PO = PO(O) + zpo(‘) + . , . 

then for the equations of the first-order 
approximation we have the following combina- 

tion of boundary-value problems (figure). In the triangle ABD we have a 

Cauchy problem; in the fan ADC a degenerate Goursat problem; and in OAC 
a mixed problem. As a result, one may find the stresses and velocities 
in the entire plastically deformed region of the A, p-plane. In a com- 
pletely analogous fashion one may solve the problem of the propagation 
of pressure when the wave-front velocity depends on time. 
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